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Abstract. The problem of three coupled spin-s = 1
2 antiferromagnetic chains has been invest-

igated. Using the bosonization method we find that, regardless of the sign of the interchain
coupling, the low-energy excitations are gapless. We show that the low-energy excitations are
equivalent to those of the single antiferromagnetics = 1

2 Heisenberg chain.

1. Introduction

It already known [1] that one-dimensional Heisenberg chains with half-integer spin are gap-
less and those with integer spin are gapped. The discovery of high-Tc superconductivity and,
in particular, the spin-s = 1

2 spin ladders [2, 3] have renewed interest in low-dimensional
antiferromagnetism. The behaviour of thes = 1

2 ladders is fundamentally different for
even and odd numbers of coupled chains [4]. Numerically, the difference between odd and
even chains is well understood [4–6]. Theoretically, it has been shown [7, 8] within the
coherent-state representation for spins that the difference between ladders composed of even
and odd numbers of spin chains is due to the difference in the topological Pointryagin index
θ (θ = 2πsne; s is the spins = 1

2, andne is the number of chains). This identification
[8] is obtained within the semiclassical limits � 1. An alternative method which has been
used for the spin-12 antiferromagnets in one dimension is the bosonization method [9–11].
Recently the bosonization method has been used to study the case of two antiferromagnetic
spin ladders [12]. Here we consider the natural extension to the case of ladders composed
of odd numbers of spin chains.

The purpose of this paper is to show that for an odd number of weakly coupled
antiferromagnetic (AF) chains the low-energy spin excitations are dominated by gapless
spin excitations. Explicitly, we consider three AF spin chains with an intrachain exchange
couplingJ‖ and an interchain coupling±J⊥, J‖ > |J⊥|. The fact that the two-chain spin
ladders have massive spin excitations enables us to integrate them out and to obtain an
effective action for the lowest spin mode. The lowest spin mode is gapless and is similar
to the spin-12 spinon with a spectrum like that of thes = 1

2 Heisenberg chain.
The importance of the results and the method consists in the fact that one finds massless

excitations, contrary to the existing results found for the case of three Hubbard chains
[13, 14]. The crucial point in our method is that we have been able to separate the massive
modes from a massless one. We do not perform an orthogonal transformation which mixes
the modes as in reference [3]. We use the fact that a pair of chains forms ans = 1 massive
system. The massives = 1 system couples to the third chain leaving the excitations
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massless. Unlike the spin-coherent-state formalism method [7, 8], our method is suitable
for spin and charge excitations. This fact is relevant for related problems like that of the
spin-striped cuprates.

The methodology of this paper is as follows. We introduce the Jordan–Wigner (JW)
transformation which maps the spins in each chain into spinless fermions [9]. As a result
one obtains three coupled sine–Gordon models described in terms of the bosonic fieldθr(x)

and the dual fieldφr(x), r = −1, 0, 1. We form a spin-1 pair by combining the chainr = 1
with the chainr = −1. One obtains massive excitations for the pairs

θ±(x) = 1√
2
(θr=1(x)± θr=−1(x)).

We project the massive modesθ±(x) and their dualφ±(x) and obtain an effective
Hamiltonian for the chainr = 0. The projection of thes = 1 modes is done using
the mapping of each sine–Gordon mode to two coupled Ising models [15–17]. The fact
that the correlation functions and susceptibility are known for the classical two-dimensional
Ising model [15] allows us to perform an exact integration for the massive modes.

The plan of this paper is as follows. Section 2 is devoted to the presentation of the
model, the case of threes = 1

2 chains. Section 3 discusses the gaps for the two-chain case.
Section 4 is devoted to the projection of the massive modes. As a result we obtain the
effective Hamiltonian for the low-energy excitations for the three-chain case. Section 5 is
devoted to explicit calculations made with the help of the Ising correlation functions.

2. The Jordan–Wigner bosonization for the three-spin-chain problem

The model for the three-spin-chain AF ladder is

H = J‖
∑

r=−1,0,1

∑
x

Sr (x) · Sr (x + a)+ J⊥
∑

r=−1,0,1

∑
x

Sr (x) · Sr+1(x). (1)

J‖ > 0 is the AF intrachain coupling and±J⊥ is the interchain coupling which obeys
J‖ > |J⊥|. r is the index labelling the chains;r = −1, 0, 1. We consider first the pair
of chainsr = 1 and r = −1 coupled by the interchain couplingJ⊥. In agreement with
references [12] and [22] we find that the pairr = 1 andr = −1 forms ans = 1 massive
spin system. When the third chainr = 0 is added to the system it couples to thes = 1
massive system (the pairr = 1 andr = −1) via the interchain couplingJ⊥. We construct a
low-energy Hamiltonian for the three-chain problem by integrating out the massive modes
with s = 1 obtained from the pairr = 1 andr = −1. As a result, the Heisenberg chain
r = 0 becomes an effective Heisenberg Hamiltonian with gapless excitations.

In the second part of this section we bosonize the model given in equation (1). In order
to be explicit we will separate the interchain Hamiltonian such that the massive spin pair
is formed between the chainsr = 1 andr = −1. Using the JW transformation we map
the spin-half operators into hard-core bosons and next into spinless fermions [7]. Since the
hard-core bosons in different chains commute we do not need to introduce a Klein factor
in order to have anticommutation between chains [18]. The fermions in each chain are
expressed in terms of the boson fieldsθr(x) and their dualsφr(x). These fields obey the
commutation relations

[θr(x), φr ′(x
′)] = − i

2
δr,r ′ sgn(x − x ′).

We will use the fieldsθr(x) andφr(x) or the chiral representation

θR,r (x) = 1√
2
(θr(x)− φr(x))
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and

θL,r (x) = 1√
2
(θr(x)+ φr(x)).

The anticommutation of the left and right fermions is achieved by using a set of real
Majorana fermions [19, 20],αR = τx and αL = −iτy (τx and τy are Pauli matrices,
αRαL + αLαR = 0, α2

R = α2
L = 1, −αRαL = τz with τz being a conserved quantity). We

obtain the following representation for the spin-1
2 AF chains:

Szr (x) =
1√
π
∂xθr(x)+ τz (−1)x

2πa
[e−i
√

4πθR,r (x)e−i
√

4πθL,r (x) + ei
√

4πθR,r (x)ei
√

4πθL,r (x)] (2)

S−r (x) =
1√
2πa

{
1

2
[(−i)xe−i

√
πθr (x) + (i)xei

√
πθr (x)]

× [(i)xαRei
√
π(θr (x)−φr (x)) + (−i)xαLe−i

√
π(θr (x)+φr (x))]

}
(3)

and

S+r = [S−r (x)]
†. (4)

The set of equations (2)–(4) are similar to those given in references [9, 21], the only
difference lying in the global Majorana fermions which are chain independent. We substitute
equations (2)–(4) into equation (1) and obtain the bosonized version of the three-chain
problem. The bosonized Hamiltonian is further simplified when we replaceθr(x) andφr(x)
by the set of variablesθ±(x) = (1/

√
2)(θ−1(x)± θ1(x)), φ±(x) = (1/

√
2)(φ−1(x)±φ1(x)),

θ0(x), andφ0(x). This set of variables is in agreement with the arbitrary choice that the pairs
are formed between the chainsr = 1 andr = −1. Since the modesθ±(x) andφ±(x) will
be integrated out, the effective Hamiltonian will depend on the variablesθ0(x) andφ0(x)

which will become the low-energy modes for the three-chain problem. The Hamiltonian
equation (1) is expressed in terms of the fieldsθ+(x), θ−(x), θ0(x) and their dualsφ+(x),
φ−(x), φ0(x):

H =
∫

dx h h = h+ + h− + h0+ V. (5)

The Hamiltoniansh+ andh− are identical with those obtained in reference [12] in the limit
J⊥/J‖ −→ 0. The two chainsr = +1 andr = −1 are described by the symmetric and
antisymmetric Hamiltoniansh+ andh−. h0 represents the middle chain described in terms
of θ0 and φ0. V represents the coupling between the modes ‘+’,‘−’, and ‘0’. We start
with the two chainsr = 1 andr = −1. Using the method described in reference [12] we
obtain the symmetric and antisymmetric Hamiltoniansh+ and h−. The Hamiltoniansh+
andh− are given in terms of the dimensionless exchange parametersĴ⊥ and Ĵ‖. Following
reference [12] we rescale the fields viaθ± −→

√
1/2θ± andφ± −→

√
2φ±. As a result,

we obtain the Hamiltoniansh±:

h+ = v+

2
[(∂xφ+)2+ (∂xθ+)2] − Ĵ⊥

2(πa)2
cos(

√
4πε+θ+) (6)

h− = v−

2
[(∂xφ−)2+ (∂xθ−)2] + Ĵ⊥

2(πa)2
cos(

√
4πε−θ−)

+ Ĵ⊥
(πa)2

cos

(√
4π

ε−
φ−

)
[1− cos(

√
4πε−θ−)]. (7)
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The set of equations (6) and (7) depends on the dimensionless velocitiesv± and the
parametersε±:

ε± =
√√√√1± 1

π2

(
Ĵ⊥
Ĵ‖

)
. (8)

ε± andv± depend weakly on the ratiôJ⊥/Ĵ‖. In the limit Ĵ⊥/Ĵ‖ −→ 0 we obtainε± ∼ 1
and v± ∼ (π/2)Ĵ‖. In this limit equations (6) and (7) are identical to those obtained in
reference [12]. The bosonized form for the chainr = 0 is given by [25]

h0 = v0

2
[(∂xφ0)

2+ (∂xθ0)
2] + Ĵ‖

2(πa)2
cos(

√
16πε0θ0) (9)

wherev0 andε0 are given by [25]

v0 ' π

2
Ĵ‖ ε0 =

√
1− b
1+ b < 1 b = 2/π

1+ 1/π
. (10)

Next, we represent the coupling between the modes ‘+’, ‘−’ and the chainr = 0 by
V ≡ V1+ V2:

V1 = Ĵ⊥
π

√
ε0ε+(∂xθ0)(∂xθ+)+ 2Ĵ⊥

(πa)2
sin(

√
4πε0θ0)[sin(

√
πε+θ+) cos(

√
πε−θ−)]

+ Ĵ⊥
(πa)2

cos

(√
π

ε0
φ0−

√
π

ε+
φ+

)
cos

(√
π

ε−
φ−

)
(11)

V2 = − Ĵ⊥
(πa)2

{
cos

(√
π

ε0
φ0+

√
4πε0θ0−

√
π

ε+
φ+ −√πε+θ+

)
cos

(√
π

ε−
φ− +√πε−θ−

)
+ cos

(√
π

ε0
φ0−

√
4πε0θ0−

√
π

ε+
φ+ +√πε+θ+

)
× cos

(√
π

ε−
φ− +√πε−θ−

)}
. (12)

In obtaining equations (11) and (12) we have used the rescaled form of the fieldsθ± and
φ±. We see thatV depends onε± and thus on the ratiôJ⊥/Ĵ‖.

3. The two-chain case

This problem has been considered in reference [12]. We takeV = 0 and obtain that the
two-chain problem is given byh+ + h−. Using the sine–Gordon scaling equations we can
compute the gaps for the symmetric and antisymmetric modes. In reference [12] the gaps
have been evaluated forε+ = ε− = 1. The justification for making this approximation
is provided by the fact that an exact solution can be obtained by mapping the problem to
Majorana fermions. The modelh+ in equation (6) is in the disordered phase forĴ⊥ > 0
with a positive massM+ > 0. We reduce the cut-off3 to 3e−l and find the dimensionless
gapM̂+ for the Hamiltonianh+:

M̂+(λ+) = e−lM̂+(λ+(l)).

The gap depends on the coupling constant

λ+
def= 2

π

Ĵ⊥
Ĵ‖
.
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Using the sine–Gordon scaling we find that the coupling constantλ+ obeys

λ+(l) = λ+e(2−ε+)l .

The parameterε+ is given in equation (8). Takingλ+(l) ' 1 and substitutingl into the gap
scaling equation, we find that

M̂+ =
(

2Ĵ⊥
πĴ‖

)1/(2−ε+)
∼
(

2Ĵ⊥
πĴ‖

)[
1− Ĵ⊥

π2Ĵ‖
log

(
Ĵ⊥
Ĵ‖

)]
. (13)

Whenε+ = 1 we find the same result as in reference [12].
The study of theh−-mode in equation (7) is more complicated, since forĴ⊥ > 0 the

coefficients of cos(
√

4πε−θ−) and cos(
√

4π/ε−φ−) are positive; this describes a situation
below the phase transition. Here we compute the mass gapsM− and M̃− for the field θ−
and its dual fieldφ− respectively. Whenε− = 1, the mapping to an Ising model is possible,
showing that one field is in the disordered phase, and the other one in the ordered phase.
Performing a similar analysis to the one performed forh+ gives us

|M̂−| =
(

2Ĵ⊥
πĴ‖

)1/(2−ε+)
∼
(

2Ĵ⊥
πĴ‖

)[
1− Ĵ⊥

π2Ĵ‖
log

(
Ĵ⊥
Ĵ‖

)]
(14)

and for the mass for the dual onẽM−

| ˆ̃M−| =
(

2Ĵ⊥
πĴ‖

)1/(2−1/ε−)

∼
(

2Ĵ⊥
πĴ‖

)[
1+ 1

π2
log

(
Ĵ⊥
Ĵ‖

)]
(15)

In obtaining the results in equations (14) and (15) we have neglected the term

cos

(√
4π

ε−
φ−

)
cos(

√
4πε−θ−).

This term has a marginal dimension 2− ε− − 1/ε− ' 0 corresponding to the sine–Gordon
scaling equation, and can be neglected relative to the relevant terms cos(

√
4πε−θ−),

which has a positive dimension 2− ε− > 0, and cos(
√

4π/ε−φ−), with a dimension
2 − 1/ε− > 0. For the remainder of this paper we will neglect the marginal term
cos(
√

4π/ε−φ−) cos(
√

4πε−θ−). We will see that a dimensionality argument will justify
the neglect ofV2 (equation (12)). As a result we need only to study the effect ofV1 given
by equation (11).

4. The effective action for the massless mode—the three-chain case

For the three-chain case the presence of the massive excitations ofh+ andh− (equations
(6) and (7)) facilitates the derivation of an effective action

h̃0, h̃0
def= h0+ Veff .

h0 is given by equation (9) andVeff is the effective action obtained by projecting out the
massive modes.h̃0 is obtained in the following way. We introduce an evolution operator
U(t, 0):

U(t, 0) =
∞∑
n=0

(−i)n

n!

∫ t

0
dt1 · · ·

∫ t

0
dtn T̂ [V (t1) · · ·V (tn)]. (16)
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V (t) is the coupling term given by equations (11) and 12 in the interaction picture. The
effective action is obtained by taking the trace over the modes{+,−}:

〈U(t, 0)〉 def= Tr{+,−} U(t, 0) (17)

Tr{0,+,−}[e−iHt ] = Tr{0}[e−iH0t 〈U(t, 0)〉] (18)

where

H0 =
∫

dx h0.

Equations (17) and (18) define the effective actionh̃0:

h̃0 = h0+ Veff Veff =
∑
n=1

1

n!
V (n) (19)

where theV (n) are the cumulant terms obtained fromV :

V (1) = 〈V 〉{+,−} V (2) = 〈V 2〉{+,−} − 〈V 〉2{+,−} (20)

and so on. V (1) is the first cumulant andV (2) the second one. The crucial fact in the
computation of the cumulants in equation (19) is that the modesθ+, θ−, andφ− are massive.
As a result,

〈sin(
√
πε+θ+)〉 =

〈
sin

(√
π

ε+
φ+

)〉
=
〈
cos

(√
π

ε−
φ−

)〉
= 0 (21)

from which we conclude that the first moment vanishes:

V (1) = 〈V 〉{+,−} = 0. (22)

The nth-order cumulant scales like(J⊥)n. Such terms will induce sine–Gordon terms of
the form cos(n

√
4πε0θ0) or cos(n

√
4π/ε0φ0). They have negative scaling dimensions for

n > 3. So these terms are irrelevant and will be ignored. The only effect of then > 3 terms
is to renormalize the coupling constants of the relevant terms. Keeping only terms of the
ordern = 2, from V (2) = V (2)1 (theV (2)2 -terms are irrelevant according to the sine–Gordon
naive scaling dimension) we obtain

H̃0 =
∫

dx h̃0(x) (23)

h̃0(x) = h0(x)+ Ĵ
2
⊥
i

∫
dx ′

∫ t

0
dt ′

ε0ε1

π2
F(x ′, t ′) ∂xθ0(x, t) ∂xθ0(x + x ′, t − t ′)

+ 1

2i

(
2J⊥
πa

)2 ∫
dx ′

∫ t

0
dt ′

{
R(x ′, t ′)

× 1

2
[cos(

√
4πε0(θ0(x, t)− θ0(x + x ′, t − t ′)))

− cos(
√

4πε0(θ0(x, t)+ θ0(x + x ′, t − t ′)))]
+ G(x ′, t ′) cos

[√
π

ε0
(φ0(x, t)− φ0(x + x ′, t − t ′))

]}
(24)

where the functionsF(x ′, t ′), R(x ′, t ′), andG(x ′, t ′) are obtained from the correlation
functions ofθ+, θ−, φ+, andφ−:

F(x ′, t ′) = 〈∂xθ+(x, t) ∂xθ+(x + x ′, t − t ′)〉{+,−}. (25)
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Due to the fact that the fieldθ+ has a massM+ > 0 (see equation (13)), the functionF will
create higher-order derivatives which are irrelevant and will be ignored. The only relevant
correlations are determined by the functionsR(x ′, t ′) andG(x ′, t ′):

R(x ′, t ′) = 〈: sin[
√
πε+θ+(x ′, t ′)]:: sin[

√
πε+θ+(0)]:〉{+}

× 〈: cos[
√
πε−θ−(x ′, t ′)]:: cos[

√
πε−θ−(0)]:〉{−} (26)

G(x ′, t ′) =
〈
: cos

[√
π

ε+
φ+(x ′, t ′)

]
:: cos

[√
π

ε+
φ+(0)

]
:

〉
{+}

×
〈
: cos

[√
π

ε−
φ−(x ′, t ′)

]
:: cos

[√
π

ε+
φ−(0)

]
:

〉
{−}

(27)

where :: represents the normal order and〈 〉{±} represents the expectation value with respect
to the Hamiltoniansh± given in equations (6) and (7). Since the fieldsθ+, θ−, φ+, andφ−
are massive, it follows that the functionsR andG decay exponentially at large distances.
It is this fact which allows us to perform a derivative expansion resulting in a sine–Gordon
model which is, in the massless phase, similar to the situation for the single Heisenberg
chain. An explicit calculation is easily performed using the mapping ofh+ and h− to
Majorana fermions and the two-dimensional Ising model.

5. Computation of the effective action for the three-chain problem using the real
Majorana fermion representation

The purpose of this section is to show that forε+ ∼ ε− ∼ 1 one can find an exact form
of the functionsR(x ′, t ′) andG(x ′, t ′) in terms of the known correlation functions of the
two-dimensional Ising model [15, 23]. We perform this calculation in the following steps.

(a) Express the Majorana fermions as a function of the bosonic fieldsθr andφr .
(b) Identify h+ andh− each with two Majorana models.
(c) Identify each Majorana model with an Ising model (in the ordered or disordered

phase).
(d) ComputeR andG using the Ising language.

We introduce two pairs of real Majorana spinors:

χ̂r (x) =
(
χR,r (x)

χL,r (x)

)
η̂r (x) =

(
ηR,r (x)

ηL,r (x)

)
r = +,−

Following reference [16] we have

χR,r (x) = 1√
πa

: cos[
√
π(θr(x)− φr(x))]:

χL,r (x) = 1√
πa

: cos[
√
π(θr(x)+ φr(x))]:

(28)

and

ηR,r (x) = 1√
πa

: sin[
√
π(θr(x)− φr(x))]:

ηL,r (x) = 1√
πa

: sin[
√
π(θr(x)+ φr(x))]:.

(29)

Using equations (28) and (29) we maph+ andh− into Majorana Hamiltonians [12]. Each
Majorana Hamiltonian is equivalent to a 1D quantum Ising model [24]. For each spinor
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we introduce an order variable and a disorder variable. For the spinorχ̂r (x) we introduce
σr(x), the order variable, andµr(x), the disorder one. For̂ηr(x) we introduceτr(x), the
order field, andρr(x), the disorder field. Following reference [12] we find forε± ' 1 the
results forhr , r = +,−:

hr = hr(χ̂)+ hr(η̂) (30)

hr(χ̂) = v(r)

2
(χR,r (x)(−i ∂x)χR,r (x)+ χL,r (x)(i ∂x)χL,r (x))− imrχR,r (x)χL,r (x) (31)

hr(η̂) = v(r)

2
(ηR,r (x)(−i ∂x)ηR,r (x)+ ηL,r (x)(i ∂x)ηL,r (x))− im̃rηR,r (x)ηL,r (x). (32)

Using the Ising language we relate the external fieldλr to the massmr and find

hr(χ̂) ≡ hr(σr) = −λr
∑
x

σ zr (x)−
∑
x

σr(x)σr(x + 1) (33)

with mr = (λr − 1)3 and

hr(η̂) ≡ hr(τr) = −λ̃r
∑
x

τ zr (x)−
∑
x

τr (x)τr(x + 1) (34)

with m̃r = (λ̃r − 1)3. Whenmr > 0 (m̃r > 0) the Ising model is in the disordered phase
and obeys〈σr〉 = 0, 〈µr〉 6= 0 (〈τr〉 = 0, 〈ρr〉 6= 0). Formr < 0 (m̃r < 0) the Ising model
is in the ordered phase〈σr〉 6= 0, 〈µr〉 = 0 (〈τr〉 6= 0, 〈ρr〉 = 0). The computation ofVeff
in equation (19) is done using the Ising variables:

: sin[
√
πθr(x)]: = σr(x)τr(x) (35)

: cos[
√
πθr(x)]: = µr(x)ρr(x) (36)

: sin[
√
πφr(x)]: = µr(x)τr(x) (37)

: cos[
√
πφr(x)]: = σr(x)ρr(x). (38)

We remark that the identification given by equations (35)–(38) holds only forε± = 1.
Replacingε± ∼ 1 by ε± = 1 means that we neglect corrections of the order(Ĵ⊥/Ĵ‖)2 in
Veff which scales likeĴ 2

⊥ (see equation (24)). From equations (6) and (7) we identify, in
agreement with reference [12],

m+ = m̃+ = m− = Ĵ⊥
πa

m̃− = −3m+. (39)

The sign of the Majorana masses depends on the sign ofĴ⊥. For Ĵ⊥ > 0, m+ = m̃+ > 0
and the Ising models are in the disordered phase,〈σ+〉 = 〈τ+〉 = 0 and〈µ+〉 = 〈ρ+〉 6= 0.
The Ising moder = − hasm− > 0 and m̃− < 0, resulting in〈σ−〉 = 〈ρ−〉 = 0 and
〈µ−〉 = 〈τ−〉 6= 0. When Ĵ⊥ < 0 the disordered phase is mapped into the ordered one,
σ −→ µ, τ −→ ρ andµ −→ σ , ρ −→ τ . The crucial point is that the first cumulant
vanishes,V (1) = 0, irrespective of the sign of̂J⊥. Qualitatively the result for the higher-
order cumulants is independent of the sign ofĴ⊥. Quantitatively the values ofR(x ′, t) and
G(x ′, t) are different. ForĴ⊥ > 0 we have three Ising models in the disordered phase and
one in the ordered phase. When̂J⊥ < 0 three Ising models are in the ordered phase and
one is in the disordered phase.

We computeR(x ′, t) andG(x ′, t) for ε± = 1 and findR(x ′, t) = G(x ′, t). Using the
Ising variables we find

R(x ′, t ′) = 〈σ+(x ′, t ′)σ+(0)〉m+〈τ+(x ′, t ′)τ+(0)〉m̃+
× 〈µ−(x ′, t ′)µ−(0)〉m−〈ρ−(x ′, t ′)ρ−(0)〉m̃− . (40)
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For Ĵ⊥ > 0, R(x ′, t ′) def= R(+)(x ′, t ′), equation (40) is simplified.〈µ−〉 6= 0, resulting in
〈µ−(x ′, t ′)µ−(0)〉 ' [〈µ−〉m− ]2. Sincem+ = m̃+ > 0, theσ+-correlation is equal to the
τ+-correction. Sincem̃− < 0, we have

〈ρ−(x ′, t ′)ρ−(0)〉m̃− = 〈τ−(x ′, t ′)τ−(0)〉−m̃− .
As a result, equation (40) takes the following form forĴ⊥ > 0:

R(+)(x ′, t ′) = [〈σ(x ′, t ′)σ (0)〉m]2[〈σ 〉−m]2〈σ(x ′, t ′)σ (0)〉3m. (41)

In equation (41) we have used an Ising model withm = Ĵ⊥/πa > 0. WhenĴ⊥ < 0, we

defineR(x ′, t ′) def= R(−)(x ′, t ′) and obtain from equation (40) instead of equation (41)

R(−)(x ′, t ′) = [〈σ 〉m]4〈σ(x ′, t ′)σ (0)〉−m[〈σ 〉3m]2 (42)

wherem = Ĵ⊥/πa < 0. The explicit results in equations (41) and (42) depend on the
two-dimensional Ising correlation function [23]C(s):

C(s =
√
x2− v2t2)

def= 〈σ(x, t)σ (0)〉. (43)

This correlation function is computed in the disordered phase and depends on the mass

M ≡ m

v∗
=
( |Ĵ⊥|
Ĵ‖

)(
1

πa

)
.

We obtain

C(s) =


√

2

πM|s|e
−Ms M|s| −→ ∞

1

(M|s|)1/4
[

1− 1

2
M|s| log

(
1

2
M|s|

)]
M|s| −→ 0.

(44)

In the ordered phase, we take−M and obtain [14]

〈σ 〉−M = (Ma)β 1

8
6 β 6 1

2
Ma = 1

π

|Ĵ⊥|
Ĵ‖

(45)

where β = βc = 1/8 is the critical exponent of the Ising model, andβ = 1/2 is the
mean-field exponent.

The critical region corresponds tôJ⊥/Ĵ‖ −→ 0. This region is characterized by
β = βc = 1/8 and the Ising correlation functionC(s) ∼ 1/|s|1/4. The functionsR(+)(x ′, t ′)
andR(−)(x ′, t ′) take the following forms in the critical region,Ma = (1/π)|Ĵ⊥|/Ĵ‖ −→ 0:

R(+)(s) ∼ 1

31/4

(Ma)1/4

(M|s|)3/4 R(−)(s) ∼ 31/4 (Ma)
1/2

(M|s|)1/4 . (46)

The functionsR(+)(x ′, t ′) andR(−)(x ′, t ′) must be substituted in the effective Hamiltonian
given in equation (24). Due to the long-range behaviour, no simple correspondence with
the single spin-12 chain can be found. From equation (46) we see that the critical behaviours

for Ĵ⊥ > 0 andĴ⊥ < 0 are different. The critical behaviour of the model given in equation
(24) will be considered elsewhere. Next we concentrate our investigation on regions away
from the critical region using equation (44) forM|s| −→ ∞, andβ ' 1/2 in equation (45).
We find from equations (44), (45), and (41)

R(+)(s) '
√

1

3

(
2

π

)3
(Ma)2β

(M|s|)3/2 e−5sM. (47)
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Correspondingly, from equation (42) we find forĴ⊥ < 0

R(−)(s) '
√

2π
(Ma)2β(3Ma)2β

(M|s|)1/2 e−sM. (48)

We substitute equations (47) and (48) (forĴ⊥ < 0) into the effective Hamiltoniañh0 in
equation (24). We perform a Euclidean rotation forR(x ′, t ′) → R(x ′, iτ ′), t ′ → iτ ′ and
perform a derivative expansion in equation (24). We make the substitutions∂tθ0 = v(0) ∂xφ0,
∂tφ0 = −v(0) ∂xθ0 and keep only relevant terms in the expansion (we neglect higher-order
derivatives). The effective Hamiltonian in equation (24) is replaced by

h̃0 = v0

2

[
((∂xφ0)

2+ (∂xθ0)
2)+ c1

(
2|Ĵ⊥|
πĴ‖

)2(γ−1)

((∂xθ0)
2− (∂xφ0)

2)

]
+ Ĵ‖

2(πa)2

[
1− c0

(
2|Ĵ⊥|
πĴ‖

)2γ]
cos(

√
16πε0θ0) (49)

wherec0, c1, andε0 are numerical constants:

ε0 =
√

1− 1/π

1+ 3/π
' 0.6 c0 ' 1 c1 ' 10−3

(
1

2ε0
− ε0

)
' 2.4× 10−4.

The exponentγ replacesβ:

γ =
{
β Ĵ⊥ > 0

2β Ĵ⊥ < 0.
(50)

From equations (49)–(50) we see that forĴ⊥ < 0, γ − 1 = 2β − 1 ' 0, allowing us to
neglect the term

c1(2|Ĵ⊥|/πĴ‖)2(γ−1)((∂xθ0)
2− (∂xφ0)

2).

As a result, equation (49) takes the same form ash0 in equation (9), wherêJ‖ is replaced
by Ĵ‖(1− c0(2|Ĵ⊥|/πĴ‖)2).

Next we consider the case of positive interchain couplingĴ⊥ > 0 outside the critical
region. We have for this caseγ − 1= β − 1∼ −1/2 andγ = β ' 1/2. For this case the
corrections in equation (49) cannot be ignored! We rescale the Hamiltonian in equation (49)
via φ0→ φ0/

√
K, θ0→ θ0

√
K whereK is given by

K =
√√√√[1− c1

(
2|Ĵ⊥|
πĴ‖

)2(γ−1)]/[
1+ c1

(
2|Ĵ⊥|
πĴ‖

)2(γ−1)]
c1 ' 2.4× 10−4. (51)

The effective Hamiltonian in equation (49) is replaced for both cases by

h̄0 =
v0
eff

2
[(∂xφ0)

2+ (∂xθ0)
2] + Ĵeff

2(πa)2
cos(

√
16πKeff θ0) (52)

where

Keff ≡ ε0K v0
eff = v0

√√√√1−
(
c1

(
2|Ĵ⊥|
πĴ‖

)2(γ−1))2

(53)

and Ĵeff is given by

Ĵeff = Ĵ‖
[

1− c0

(
2|Ĵ⊥|
πĴ‖

)2γ]
. (54)
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The effective Hamiltonian̄h0 in equation (52) describes massless excitations if the parameter
Keff (see equations (51) and (53)) obeys 1/26 Keff 6 1. Using equation (51) we find that
this can be satisfied if(2Ĵ⊥)/(πĴ‖) > 10−3. The limit Ĵ⊥/Ĵ‖ → 0 requires a renormalization
group analysis. The difficulty lies in the fact that the derivative expansion is not valid (see
the discussion following equation (46)).

As a result, the effective Hamiltonian in equation (52) describes massless excitations
similar to those obtained for the spin-1

2 Heisenberg chain. It seems that only forĴ⊥ −→ 0
are the behaviours for the positive and the negative signs different. For moderate values of
Ĵ⊥ the qualitative behaviour is independent of the sign ofĴ⊥.

6. Conclusion

Three coupled spin-s = 1
2 AF chains have been investigated within the bosonization method.

Projecting out thes = 1 massive modes of the two-chain problem, we find that the low-
energy excitations of the three-chain problem are massless and are similar to those of the
single s = 1

2 AF chain conjectured in reference [1]. We find that the qualitative behaviour
of the massless excitations in the three-spin-chain problem is independent of the sign of
the interchain couplingĴ⊥. The results obtained are in agreement with those given in
references [7] and [8] based on the coherent-state and semiclassical approximations for
spins. The method introduced here can be used to study the doped striped cuprates in
high-Tc materials, and can be extended to the study of many coupled chains.

Acknowledgments

Ping Sun would like to thank Professor B Sakita and Professor Joseph L Birman for helpful
discussions.

References

[1] Haldane F D M 1983Phys. Rev. Lett.A 93 464
[2] Johnston D C, Johnson J W, Goshorn D P and Jacobson A J 1987Phys. Rev.B 35 219
[3] Hiroi Z, Azuma M, Takano M and Bando Y 1991J. Solid State Chem.95 239
[4] Dagotto E and Rice T M 1996Science271 618
[5] Greven M, Birgeneau R J and Wiese U J 1996Phys. Rev. Lett.77 1865
[6] White S R and Affleck I 1996Phys. Rev. Lett.54 9862
[7] Aringa S D, Encoleni E, Morondi G, Pieri P and Roncoglia M 1997Phys. Rev. Lett.78 2457
[8] Sierra G 1996J. Phys. A: Math. Gen.29 3299
[9] Affleck I 1986 Nucl. Phys.B 265 409

[10] Shultz H J 1986Phys. Rev.B 34 6372
[11] Affleck I and Haldane F D M 1987Phys. Rev.B 36 5291
[12] Shelton D G, Nersesyan A A and Tsvelik A M 1996 Phys. Rev.B 53 8521

Nersesyan A A and Tsvelik A M 1997 Phys. Rev. Lett.78 3939
[13] Kimura T, Kuroki K and Aoki H 1996Phys. Rev.B 54 R9608
[14] Arrigoni E 1996Phys. Lett.215A 91
[15] Zuber J B and Itzykson C 1977Phys. Rev.D 15 2875

Bander M and Itzykson C 1977Phys. Rev.D 15 463
[16] Boyanovsky D 1989Phys. Rev.B 39 6746

Boyanovsky D and Naon C M 1989Rev. Nuovo Cimento13 46
[17] Difrancesco P, Saleur H and Zuber J B 1987Nucl. Phys.B 290 527
[18] Schmeltzer D 1995Phys. Rev.B 51 3709 (see equations (3a)–(3c), p 3710)
[19] Fabrizio M and Gogolin A 1995Phys. Rev.B 51 17 827
[20] Banks T, Horn D and Neuberger H 1976Nucl. Phys.B 108 117



4446 D Schmeltzer and Ping Sun

[21] Affleck I 1989Fields, Strings and Critical Phenomena (Les Houche 1988 Session 49)(Amsterdam: Elsevier)
[22] Allen D and Senechal D 1997Phys. Rev.B 55 299
[23] Itzykson C and Drouffe J M 1989Statistical Field Theoryvol 1 (Cambridge: Cambridge University Press)
[24] Schroer B and Truong T T 1978Nucl. Phys.B 144 80
[25] Eggert S and Affleck I 1992Phys. Rev.B 46 10 866


