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Abstract. The problem of three coupled spin= % antiferromagnetic chains has been invest-
igated. Using the bosonization method we find that, regardless of the sign of the interchain
coupling, the low-energy excitations are gapless. We show that the low-energy excitations are
equivalent to those of the single antiferromagnetie % Heisenberg chain.

1. Introduction

It already known [1] that one-dimensional Heisenberg chains with half-integer spin are gap-
less and those with integer spin are gapped. The discovery offhighperconductivity and,

in particular, the spin-= % spin ladders [2, 3] have renewed interest in low-dimensional
antiferromagnetism. The behaviour of the= % ladders is fundamentally different for

even and odd numbers of coupled chains [4]. Numerically, the difference between odd and
even chains is well understood [4—6]. Theoretically, it has been shown [7, 8] within the
coherent-state representation for spins that the difference between ladders composed of even
and odd numbers of spin chains is due to the difference in the topological Pointryagin index
0 (0 = 2msn,; s is the spins = % andn, is the number of chains). This identification

[8] is obtained within the semiclassical limit>> 1. An alternative method which has been
used for the spir% antiferromagnets in one dimension is the bosonization method [9-11].
Recently the bosonization method has been used to study the case of two antiferromagnetic
spin ladders [12]. Here we consider the natural extension to the case of ladders composed
of odd numbers of spin chains.

The purpose of this paper is to show that for an odd number of weakly coupled
antiferromagnetic (AF) chains the low-energy spin excitations are dominated by gapless
spin excitations. Explicitly, we consider three AF spin chains with an intrachain exchange
coupling J; and an interchain coupling-J,, J; > |J.|. The fact that the two-chain spin
ladders have massive spin excitations enables us to integrate them out and to obtain an
effective action for the lowest spin mode. The lowest spin mode is gapless and is similar
to the spinZ spinon with a spectrum like that of the= 1 Heisenberg chain.

The importance of the results and the method consists in the fact that one finds massless
excitations, contrary to the existing results found for the case of three Hubbard chains
[13, 14]. The crucial point in our method is that we have been able to separate the massive
modes from a massless one. We do not perform an orthogonal transformation which mixes
the modes as in reference [3]. We use the fact that a pair of chains formns-dnmassive
system. The massive = 1 system couples to the third chain leaving the excitations
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4436 D Schmeltzer and Ping Sun

massless. Unlike the spin-coherent-state formalism method [7, 8], our method is suitable
for spin and charge excitations. This fact is relevant for related problems like that of the
spin-striped cuprates.

The methodology of this paper is as follows. We introduce the Jordan—-Wigner (JW)
transformation which maps the spins in each chain into spinless fermions [9]. As a result
one obtains three coupled sine—Gordon models described in terms of the bosorfig(figld
and the dual field, (x), r = —1, 0, 1. We form a spin-1 pair by combining the chain= 1
with the chainr = —1. One obtains massive excitations for the pairs

1
O+(x) = 72(@:1()6) +6,—-1(x)).

We project the massive modées.(x) and their dual¢g.(x) and obtain an effective
Hamiltonian for the chainr = 0. The projection of thes = 1 modes is done using

the mapping of each sine—Gordon mode to two coupled Ising models [15-17]. The fact
that the correlation functions and susceptibility are known for the classical two-dimensional
Ising model [15] allows us to perform an exact integration for the massive modes.

The plan of this paper is as follows. Section 2 is devoted to the presentation of the
model, the case of three= % chains. Section 3 discusses the gaps for the two-chain case.
Section 4 is devoted to the projection of the massive modes. As a result we obtain the
effective Hamiltonian for the low-energy excitations for the three-chain case. Section 5 is
devoted to explicit calculations made with the help of the Ising correlation functions.

2. The Jordan—-Wigner bosonization for the three-spin-chain problem

The model for the three-spin-chain AF ladder is
H=J Y Y 8- -Sa+a+J. Y. > S-S, (1)
r=—101 x r=—101 «x
Jy > 0 is the AF intrachain coupling angtJ, is the interchain coupling which obeys
Jy > |J.|. r is the index labelling the chaing; = —1,0,1. We consider first the pair
of chainsr = 1 andr = —1 coupled by the interchain coupling, . In agreement with
references [12] and [22] we find that the paie= 1 andr = —1 forms ans = 1 massive
spin system. When the third chain= 0 is added to the system it couples to the- 1
massive system (the pair= 1 andr = —1) via the interchain coupling,. We construct a
low-energy Hamiltonian for the three-chain problem by integrating out the massive modes
with s = 1 obtained from the pair = 1 andr = —1. As a result, the Heisenberg chain
r = 0 becomes an effective Heisenberg Hamiltonian with gapless excitations.

In the second part of this section we bosonize the model given in equation (1). In order
to be explicit we will separate the interchain Hamiltonian such that the massive spin pair
is formed between the chains= 1 andr = —1. Using the JW transformation we map
the spin-half operators into hard-core bosons and next into spinless fermions [7]. Since the
hard-core bosons in different chains commute we do not need to introduce a Klein factor
in order to have anticommutation between chains [18]. The fermions in each chain are
expressed in terms of the boson fielgx) and their dualsp, (x). These fields obey the
commutation relations

[6,(x)., by ()] = —lzar,,f Sgnix — x').

We will use the field®, (x) and ¢, (x) or the chiral representation

1
Or.r(x) = 72(9r(x) — ¢, (x))



Antiferromagnetic spin ladders 4437

and
O (x) = i(Gr(x) + ¢ (x)).
’ V2
The anticommutation of the left and right fermions is achieved by using a set of real
Majorana fermions [19, 20]¢gx = 7, and oy = —ity (7, and r, are Pauli matrices,

agap +arag =0, @2 = a? = 1, —aga; = 1, With 7, being a conserved quantity). We

obtain the following representation for the spﬁrAF chains:

1 -1* ; i i
SrZ(x) — ﬁ 3,6, (x) + T, (27[()1 [e—|\/E9R.r(x)e_|m9L.r(x) 4 elm@m(x)elmﬁ.r(x)] )
1 1 . o
Sr_(x) = —zna {E[(_Dxe_'ﬁ@r(x) + (|)Xéﬁ9r(x)]
X [(i)xaRéﬁ(O’(x)_¢"(x)) + (_i)xaLe—iﬁ((’,(X)+¢r(x))]} (3)
and
S =[5 @]". (4)

The set of equations (2)—(4) are similar to those given in references [9, 21], the only
difference lying in the global Majorana fermions which are chain independent. We substitute
equations (2)—(4) into equation (1) and obtain the bosonized version of the three-chain
problem. The bosonized Hamiltonian is further simplified when we re@aad and¢, (x)

by the set of variables. (x) = (1/v/2)(0-1(x) £61(x)), ¢+ (x) = (1/v/2)(¢-1(x) £ p1(x)),

Bo(x), andgo(x). This set of variables is in agreement with the arbitrary choice that the pairs

are formed between the chains= 1 andr = —1. Since the mode8. (x) and ¢ (x) will

be integrated out, the effective Hamiltonian will depend on the varia®es and ¢o(x)

which will become the low-energy modes for the three-chain problem. The Hamiltonian

equation (1) is expressed in terms of the fiedds$x), 6_(x), 6p(x) and their dualgp, (x),

¢ (x), ¢o(x):
H:/dxh h=hy+h_+ho+V. (5)

The Hamiltoniang:, andi_ are identical with those obtained in reference [12] in the limit
Ji/Jy — 0. The two chaing = +1 andr = —1 are described by the symmetric and
antisymmetric Hamiltoniang . andk_. ko represents the middle chain described in terms
of 6y and ¢p. V represents the coupling between the modes'~’, and ‘0’. We start
with the two chaing = 1 andr = —1. Using the method described in reference [12] we
obtain the symmetric and antisymmetric Hamiltonignsand z_. The Hamiltoniang:
and/_ are given in terms of the dimensionless exchange paraméteasd f”. Following
reference [12] we rescale the fields via — /1/20,. and¢. —> +/2¢.. As a result,
we obtain the Hamiltonians..:

* J
hy = v?[(ax¢+)2 + (:0)3] — 2(7;1)2 cosy/4me, 0,) (6)
_v 2 2 Ji
h_ = 5 [(0xp-)" + (0:0-)7] + 2ra)? cos\/4me_6_)

jj_ 47
+ Ga) cos( /Z¢>>[1 — cogy/4dme_6_)]. ©)
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The set of equations (6) and (7) depends on the dimensionless velocitiemd the

parameters . :
1/J,
72\ Jy

e andv* depend weakly on the ratid, /J;. In the limit J, /J, — O we obtaine. ~ 1

and vt ~ (n/2)JAH. In this limit equations (6) and (7) are identical to those obtained in
reference [12]. The bosonized form for the chaiga- 0 is given by [25]

~

0 J
ho = —[(8:0)% + (2:60)%] + 5~ 5 cosly/16eobo) ©)
(ra)
wherev® andeg are given by [25]
0T 5 _J1-b _ 2m
vEZh =T s b= (10)

Next, we represent the coupling between the modgs “—' and the chainr = 0 by
V=Vi+ Vo

J 2J, .
Vi= f@(axeoxaxm) + —(Mi)z sin(y/4r eqbo)[SiN(/Te1 64) COS(/Te—6.)]

+ oo [Tao— [T oo [T ) 1)
(wa) €0 € e
V=—j—L cos(/£¢> + Amepby — 1(1) —./rre@)cos( 14) +4/7TE(9>
2 (1a)? . 0 obo et + +6+ c 7~ -0
+ cos( /61¢0 — VA eobo — /61¢+ + 4/_ﬂe+9+>
0 +

X cos<\/ez¢_ + \/EQ_) } (12)

In obtaining equations (11) and (12) we have used the rescaled form of thetfiektsd
¢+. We see thaV depends or. and thus on the ratid, /J;.

3. The two-chain case

This problem has been considered in reference [12]. We take 0 and obtain that the
two-chain problem is given by, + 2_. Using the sine-Gordon scaling equations we can
compute the gaps for the symmetric and antisymmetric modes. In reference [12] the gaps
have been evaluated fer. = e = 1. The justification for making this approximation

is provided by the fact that an exact solution can be obtained by mapping the problem to
Majorana fermions. The modél, in equation (6) is in the disordered phase for > 0

with a positive masa/, > 0. We reduce the cut-ofk to Ae™ and find the dimensionless
gap M. for the Hamiltonian_:

M Gy) = €' My (s ().
The gap depends on the coupling constant
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Using the sine—Gordon scaling we find that the coupling constardbeys
Ay(l) = hype@edl

The parametet, is given in equation (8). Taking, (/) ~ 1 and substituting into the gap
scaling equation, we find that

. 27\ Y@ <) 2J J J
= (25) 0~ () (7)) @9
mJj TJj w2 Jj

Whene, = 1 we find the same result as in reference [12].

The study of theh_-mode in equation (7) is more complicated, since for> 0 the
coefficients of co6/4me_6_) and co$/4n /e_¢_) are positive; this describes a situation
below the phase transition. Here we compute the mass gapand M_ for the field6_
and its dual fieldp_ respectively. Wher_ = 1, the mapping to an Ising model is possible,
showing that one field is in the disordered phase, and the other one in the ordered phase.
Performing a similar analysis to the one performed#qrgives us

. 27\ Y@< 2] J J
\M_| = < f) ~ ( f)[l— L |og<%>] (14)
mJj mJj w2 Jj

and for the mass for the dual oié_

2 27\ Y@ e) 2J 1 J
\M_| = ( f) ~ ( - )[1+ —2I0g<%>} (15)
mJj mJj T Jj

In obtaining the results in equations (14) and (15) we have neglected the term

cos( /j—”¢> cog/4re_6_).

This term has a marginal dimension-2_ — 1/¢_ ~ 0 corresponding to the sine—Gordon
scaling equation, and can be neglected relative to the relevant ternig’dens 6_),
which has a positive dimension 2 ¢_ > 0, and co$/4n/e_¢_), with a dimension
2—-1/e. > 0. For the remainder of this paper we will neglect the marginal term
cos/4r /e_¢p_) cos/Are_0_). We will see that a dimensionality argument will justify
the neglect ofV, (equation (12)). As a result we need only to study the effedriofiiven

by equation (11).

4. The effective action for the massless mode—the three-chain case

For the three-chain case the presence of the massive excitatigns aridz_ (equations
(6) and (7)) facilitates the derivation of an effective action
ho, ho d=efho + Verr-

ho is given by equation (9) andf,;, is the effective action obtained by projecting out the

massive modesky is obtained in the following way. We introduce an evolution operator
Uz, 0):

U0 =y (_i.)nfo dtl---/o diy T[V(12) -+ V(1)) (16)

n=0 n
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V(¢) is the coupling term given by equations (11) and 12 in the interaction picture. The
effective action is obtained by taking the trace over the mddes-}:

def

(U@, 0)=Try, U@, 0 (17)

Trio4.[e7'""] = Trig[e” ™" (U (z, 0))] (18)
where

Hy = /dx ho.

Equations (17) and (18) define the effective actign
- 1
_ _ =R TAQ)
ho = ho + Veff ng = ; py 1% (19)
where theV™ are the cumulant terms obtained frdm
VO = (V) VO = (V3 — (V)] (20)

and so on. V® is the first cumulant and’@ the second one. The crucial fact in the
computation of the cumulants in equation (19) is that the méde8_, and¢_ are massive.

As a result,
(sin(y/me;61)) = <sin<\/§¢+)> = <cos(\/§¢_)> =0 (21)

from which we conclude that the first moment vanishes:
v = (V). =0. (22)

The nth-order cumulant scales like/,)". Such terms will induce sine—-Gordon terms of
the form cogn/4megty) or cosn./4m /egdo). They have negative scaling dimensions for

n > 3. So these terms are irrelevant and will be ignored. The only effect of thé terms

is to renormalize the coupling constants of the relevant terms. Keeping only terms of the
ordern = 2, from V@ = v? (the V,?-terms are irrelevant according to the sine—~Gordon
naive scaling dimension) we obtain

Hy = /dx ho(x) (23)

B j2 t
fro(x) = ho(x) + i—i/dx’/ d LLF G 1) 8,600k, 1) 0 + X', 1 — 1)
0 T

+ %<%>Z/dx’for dr’ {R(x’,t’)

x %[COS(\/ATEO(OO()C, 1) —bo(x +x',t —1')))

— cosy/Aeo(Bo(x, 1) + fo(x +x', 1 — 1'))]

+ G/, 1) cos[\/g(qso(x, 1) — ¢olx +x',t — t/)):| } (24)

where the functionsF(x’,t’), R(x',t), and G(x’,t") are obtained from the correlation
functions of6,,0_, ¢, and¢_:

F(x/’ t/) = <3X0+(~xa t) 8X9+(x +X/,t - t/))[-i-,—}' (25)
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Due to the fact that the fieldl, has a mas3/, > 0 (see equation (13)), the functignwill
create higher-order derivatives which are irrelevant and will be ignored. The only relevant
correlations are determined by the functiaRé&c’, t') and G (x/, t'):

R(x',1") = (:sin[y/me b4 (x', 1")]:: sin[/Tex 04 (0)]:) 4
x (:cosfy/me_0_(x', 1")]: cosl/me_0_(0)]:)( (26)

G(', 1) = <:cos[ /l¢+(x’, t’)}::cos[ /l¢+(0)]:>
€+ €+ -+
X <:cos[ /l¢_(x’,t’)i|::C05|: /l¢_(0)}> (27)
€ €+ -

where :: represents the normal order dng., represents the expectation value with respect
to the Hamiltoniang:. given in equations (6) and (7). Since the fiefds6_, ¢, and¢_

are massive, it follows that the functioms and G decay exponentially at large distances.

It is this fact which allows us to perform a derivative expansion resulting in a sine—Gordon
model which is, in the massless phase, similar to the situation for the single Heisenberg
chain. An explicit calculation is easily performed using the mapping:.ofand 2_ to
Majorana fermions and the two-dimensional Ising model.

5. Computation of the effective action for the three-chain problem using the real
Majorana fermion representation

The purpose of this section is to show that &r ~ ¢_ ~ 1 one can find an exact form
of the functionsR(x’, ) and G(x’,t") in terms of the known correlation functions of the
two-dimensional Ising model [15, 23]. We perform this calculation in the following steps.

(a) Express the Majorana fermions as a function of the bosonic fieldad ¢,.

(b) Identify k., andh_ each with two Majorana models.

(c) Identify each Majorana model with an Ising model (in the ordered or disordered
phase).

(d) ComputeR and G using the Ising language.

We introduce two pairs of real Majorana spinors:
5 _ XR,r(x) ~ _ nR,r(x) _ _
100 = (uﬂx)) () = (nL,,.(x)> r=t
Following reference [16] we have

Xrr(X) = J%: cosly/7 (6, (x) — ¢ (x))]:

XLr(x) = «/%5005[\/5(@()6) + ¢ (]

(28)

and

1 .
nR,r(-x) = ﬁ: Sln[\/;(gr(-x) - ¢r(x))]:

1
L., (x) = ﬁisin[ﬁ(&(x) + &, ())]:.
Using equations (28) and (29) we map and/_ into Majorana Hamiltonians [12]. Each
Majorana Hamiltonian is equivalent to a 1D quantum Ising model [24]. For each spinor

(29)
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we introduce an order variable and a disorder variable. For the spjioy we introduce
o.(x), the order variable, and, (x), the disorder one. Faif,(x) we introduces, (x), the
order field, ando,(x), the disorder field. Following reference [12] we find for ~ 1 the
results forh,, r = +, —:

(r)
hy (X) = v2 (XR. () (=13) xR (x) + XL () 0) XL (X)) — im, xR (X) XL (X) (31)
Q)
h, (1) = > (R () (=1 3)NR (X)) + 1L () ([ 3)NL (X)) — it 1R ()N (X). (32)
Using the Ising language we relate the external figldo the massn, and find
h(R) = he(0,) = —hy ) 07(x) = ) or(¥)o(x + 1) (33)

with m, = (A, — 1)A and
he(®) = he (1) = =A, D 75(0) = Y 1,07 (x + 1) (34)

with 7, = (A, — 1)A. Whenm, > 0 (i, > 0) the Ising model is in the disordered phase
and obeyso,) = 0, (i) # 0 ({(z,) = 0, {p,) # 0). Form, < 0 (m, < 0) the Ising model

is in the ordered phas@,) # 0, (i) = 0 ((z;) # 0, (p,) = 0). The computation o¥,,

in equation (19) is done using the Ising variables:

:SiN[V76, ()] = o, (x) T (x) (35)
1 CoS/T6, (x)]: = pur (x)pr (x) (36)
ssin[y/m ¢y (0)]: = pr (X)7,(x) (37)
: oS/, (x)]: = 0, (x) oy (x). (38)

We remark that the identification given by equations (35)—(38) holds only foe= 1.
Replacinger ~ 1 by e = 1 means that we neglect corrections of the or(jar/J”)2 in
Vers Which scales I|kel2 (see equation (24)). From equations (6) and (7) we identify, in
agreement with reference [12],
_ Ju -
my=my=m_—=— m_ = —3my. (39)
wa
The sign of the Majorana masses depends on the sigh ofor J, > 0, m, = i, > 0
and the Ising models are in the disordered ph&se) = (r,) = 0 and () = {(p4) # 0.
The Ising moder = — hasm_ > 0 andm_ < 0, resulting in(c_) = (p_) = 0 and
(u_) = (t_) # 0. When J,. < 0 the disordered phase is mapped into the ordered one,
o — u, T —> pandu — o, p —> t. The crucial point is that the first cumulant
vanishesV® = 0, irrespective of the sign of,. Qualitatively the result for the higher-
order cumulants is independent of the signjof Quantitatively the values ak(x’, r) and
G(x', 1) are different. For/, > 0 we have three Ising models in the disordered phase and
one in the ordered phase. Whén < 0 three Ising models are in the ordered phase and
one is in the disordered phase.
We computeR(x’, t) and G(x', t) for ex = 1 and findR(x’, 1) = G(x', t). Using the
Ising variables we find

R(x', 1) = (o4 (x', )04 (0, (T4 (&', t)74(0)) i,
X A= (', Y= (0 (p—(x", 1) p—(0))ir_. (40)
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ForJ. > 0, R(x', ") &' R® (v, '), equation (40) is simplified.(_) # 0, resulting in

(—(x', tYyu—(0)) ~ [{(u_)m_]?. Sincem, = m, > 0, theo,-correlation is equal to the
7,-correction. Sincen_ < 0, we have

(- (X', 1) p-(0))ia_ = (t-(x, )T (0)) .
As a result, equation (40) takes the following form tbr > 0:

RO, 1) = [(0 (', 10 (0)u]*[(0)-n]*(0 (', )5 (0)an- (41)
In equation (41) we have used an Ising model with= J, /7a > 0. WhenJ, < 0, we

defineR(x’, t') dzefR<‘>(x’, t") and obtain from equation (40) instead of equation (41)
ROW, 1) = [(0)n] 0 (&, )5 (0) [ (0)30] (42)

wherem = J, /ma < 0. The explicit results in equations (41) and (42) depend on the
two-dimensional Ising correlation function [28](s):

Cls =TT E (o 2, 0. )

This correlation function is computed in the disordered phase and depends on the mass

- (5)E)

We obtain
2
m e Ms M|s| — oo
sy =4V TMI (44)
1 1 1M| |lo 1M| | M|s| 0
— 11— = - —> 0.
Mspia| -~ 2V g M s
In the ordered phase, we takeV and obtain [14]
1 1 11/,
= (Ma)? - <B<K< = Ma = —— 45
(0)-m = (Ma) 8 B > a=_ J, (45)

where 8 = B. = 1/8 is the critical exponent of the Ising model, agd= 1/2 is the
mean-field exponent.

The critical region corresponds uﬁL/fH —> 0. This region is characterized by
B = B. = 1/8 and the Ising correlation functiafi(s) ~ 1/|s|/4. The functionsR™ (x’, t')
and R (x/, t') take the following forms in the critical region/a = (1/7r)|fl|/f” — 0:

1 (Ma)Y* (Ma)Y/?
V4 (M|s)3/4 (M|s))¥4
The functionsR™ (x’, ') and R (x’, t') must be substituted in the effective Hamiltonian

given in equation (24). Due to the long-range behaviour, no simple correspondence with
the single spin% chain can be found. From equation (46) we see that the critical behaviours
for Jl >0 andJl < 0 are different. The critical behaviour of the model given in equation
(24) will be considered elsewhere. Next we concentrate our investigation on regions away
from the critical region using equation (44) fof|s| —> oo, andg >~ 1/2 in equation (45).

We find from equations (44), (45), and (41)

[1/2\° Ma)?
R (s) ~ §<;> —(;ﬂ;)ﬁ/ze—f’m. (47)

R(Jr)(s) ~ R(i)(s) ~ 31/4 (46)
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Correspondingly, from equation (42) we find fdr < 0

(Ma)?*(3Ma)?* __,,
Vo

We substitute equations (47) and (48) (fbr < 0) into the effective Hamiltoniarkg in
equation (24). We perform a Euclidean rotation ®¢x’,t) — R(x',it’),t — it’ and
perform a derivative expansion in equation (24). We make the substit@igns: v© 8, ¢o,

3,00 = —v©@ 9.0, and keep only relevant terms in the expansion (we neglect higher-order
derivatives). The effective Hamiltonian in equation (24) is replaced by

R (s) ~ (48)

R 27,1\
o = %[((wwz (0,009 + cl( | f') (0,607 (3x¢o)2)}
7TJH
Ji |:1 - CO<2|JAL|> :| coS(+/ 167 €0bo) (49)
2(7‘[61)2 7T]||

wherecy, ¢1, andeg are numerical constants:

[1—1/x af 1 4
= |[———>~06 ~1 ~107 — — ~24x107".
€0 1+ 3/]_[ co C1 (260 60) X

The exponeny replacess:
,3 jJ_ >0
2/3 JL < 0.

From equations (49)—(50) we see that for < 0, y — 1 = 28 — 1 ~ 0, allowing us to
neglect the term

c1(21JL1/m 7?7 P (3,000 - (9:¢0)2).
As a result, equation (49) takes the same formt@s equation (9), Wheref” is replaced
by Jy (1 — coJ L/ J))?). R
Next we consider the case of positive interchain coupling> O outside the critical
region. We have for thiscage— 1=8—-1~ —1/2 andy = 8 >~ 1/2. For this case the

corrections in equation (49) cannot be ignored! We rescale the Hamiltonian in equation (49)
via ¢o — ¢o/VK, 8o — 6p/K whereK is given by

2 j 2(y—1 2 f 2(y-1)
K:J[l_q(ug [/fra(2)"] azaeeaot @
7TJ|| 7TJ||

The effective Hamiltonian in equation (49) is replaced for both cases by

_L, Je
fio = “J[(0u0)* + @60 + 5L cos/Tar K.y 2)
where
2171\ 272
Kerr = €0K Vgpy = 0° 1_<c< A) >3
1 = €0 1 N\, J, 3)

and J,;; is given by

. . 21711\ 7
Jorr =, [1—co< | f') : (54)
7TJ|| .
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The effective Hamiltoniang in equation (52) describes massless excitations if the parameter
K.rr (see equations (51) and (53)) obey?2 X K.;r < 1. Using equation (51) we find that
this can be satisfied {®/,)/( J;) > 10°3. The limitJ, /J, — O requires a renormalization
group analysis. The difficulty lies in the fact that the derivative expansion is not valid (see
the discussion following equation (46)).

As a result, the effective Hamiltonian in equation (52) describes massless excitations
similar to those obtained for the sp@Heisenberg chain. It seems that only for — 0
are the behaviours for the positive and the negative signs different. For moderate values of
J. the qualitative behaviour is independent of the sign/ of

6. Conclusion

Three coupled spin-= % AF chains have been investigated within the bosonization method.
Projecting out thes = 1 massive modes of the two-chain problem, we find that the low-

energy excitations of the three-chain problem are massless and are similar to those of the

singles = % AF chain conjectured in reference [1]. We find that the qualitative behaviour

of the massless excitations in the three-spin-chain problem is independent of the sign of
the interchain coupling/,. The results obtained are in agreement with those given in
references [7] and [8] based on the coherent-state and semiclassical approximations for
spins. The method introduced here can be used to study the doped striped cuprates in
high-T. materials, and can be extended to the study of many coupled chains.
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